BOOLEAN METHODS FOR DOUBLE INTEGRATION

FRANZ-J. DELVOS

Abstract

This paper is concerned with numerical integration of continuous functions over the unit square U^{2}. The concept of the r th-order blending rectangle rule is introduced by carrying over the idea from Boolean interpolation. Error bounds are developed, and it is shown that r th-order blending rectangle rules are comparable with number-theoretic cubature rules. Moreover, r thorder blending midpoint rules are defined and compared with the r th-order blending rectangle rules.

1. Bivariate rectangle rules

The problem we consider is the numerical evaluation of integrals of the form

$$
\begin{equation*}
\mathfrak{I}(f)=\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y \tag{1.1}
\end{equation*}
$$

where f is a continuous function on the unit square $U^{2}=[0,1]^{2}$. Moreover, we assume that f satisfies the periodicity conditions

$$
\begin{equation*}
f(x, 0)=f(x, 1), \quad f(0, y)=f(1, y) \quad(0 \leq x, y \leq 1) \tag{1.2}
\end{equation*}
$$

The inner product of $f, g \in L^{2}\left(U^{2}\right)$ is

$$
(f, g)=\int_{0}^{1} \int_{0}^{1} f(x, y) \overline{g(x, y)} d x d y
$$

We introduce the notations

$$
\begin{aligned}
e_{k}(x) & =\exp (i 2 \pi k x) \quad \\
e_{k, l}(x, y) & =e_{k}(x) \cdot e_{l}(y)
\end{aligned} \quad(k, l \in \mathbb{Z}),
$$

where $x, y \in U$. The functions $e_{k, l}(k, l \in \mathbb{Z})$ form an orthonormal basis of the Hilbert space $L^{2}\left(U^{2}\right)$. We denote by $A\left(U^{2}\right)$ the Wiener algebra of those functions $f \in L^{2}\left(U^{2}\right)$ with the property that the Fourier series of f is absolutely convergent:

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty}\left|\left(f, e_{k, l}\right)\right|<\infty \tag{1.3}
\end{equation*}
$$

Received April 3, 1989; revised November 30, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 65D30, 65D32.
Key words and phrases. Multiple integration, blending methods.

Let $\mathscr{C}\left(U^{2}\right)$ denote the subspace of those functions $f \in L^{2}\left(U^{2}\right)$ which are continuous on U^{2}. Moreover, $\mathscr{C}_{0}\left(U^{2}\right)$ denotes the subspace of those functions $f \in \mathscr{C}\left(U^{2}\right)$ which satisfy the periodicity conditions (1.2). It follows from relation (1.3) that

$$
A\left(U^{2}\right) \subseteq \mathscr{C}_{0}\left(U^{2}\right)
$$

and, for $f \in A\left(U^{2}\right)$,

$$
\begin{equation*}
f(x, y)=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty}\left(f, e_{k, l}\right) \cdot e_{k, l}(x, y) \quad(x, y \in U) \tag{1.4}
\end{equation*}
$$

Let m and n be positive integers. The most obvious cubature formula is the bivariate rectangle rule:

$$
\mathfrak{I}_{m, n}(f)=\frac{1}{m \cdot n} \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} f\left(\frac{j}{m}, \frac{k}{n}\right)
$$

The bivariate rectangle rule is not an efficient cubature formula in view of the large number of function evaluations. On the other hand, $\mathfrak{I}_{m, n}(f)$ is a basic tool in constructing a more sophisticated cubature formula, the r th-order blending rectangle rule. For this reason we will briefly derive a convenient remainder formula for $\mathfrak{I}_{m, n}(f)$.
Proposition 1. If $f \in A\left(U^{2}\right)$, then

$$
\begin{equation*}
\mathfrak{I}_{m, n}(f)=\sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty}\left(f, e_{u m, v n}\right) \tag{1.5}
\end{equation*}
$$

Proof. In view of (1.4), we have

$$
\begin{aligned}
\mathfrak{I}_{m, n}(f) & =\frac{1}{m \cdot n} \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} f\left(\frac{j}{m}, \frac{k}{n}\right) \\
& =\sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty}\left(f, e_{r, s}\right) \frac{1}{m \cdot n} \sum_{j=0}^{m-1} e_{r}\left(\frac{j}{m}\right) \sum_{k=0}^{n-1} e_{s}\left(\frac{k}{n}\right) \\
& =\sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty}\left(f, e_{u m, v n}\right) .
\end{aligned}
$$

It is useful to define the series

$$
\begin{gathered}
R_{m, \infty}(f)=\sum_{u \neq 0}\left(f, e_{u m, 0}\right), \quad R_{\infty, n}(f)=\sum_{v \neq 0}\left(f, e_{0, v n}\right), \\
R_{m, n}(f)=\sum_{u \neq 0} \sum_{v \neq 0}\left(f, e_{u m, v n}\right)
\end{gathered}
$$

Proposition 2. If $f \in A\left(U^{2}\right)$, then the error in the bivariate rectangle rule is

$$
\begin{equation*}
\mathfrak{I}_{m, n}(f)-\mathfrak{I}(f)=R_{m, \infty}(f)+R_{\infty, n}(f)+R_{m, n}(f) \tag{1.6}
\end{equation*}
$$

Proof. It follows from relation (1.5) that

$$
\mathfrak{I}_{m, n}(f)=\left(f, e_{0,0}\right)+R_{m, \infty}(f)+R_{\infty, n}(f)+R_{m, n}(f)
$$

Since $\mathfrak{I}(f)=\left(f, e_{0,0}\right)$, Proposition 2 is proved.
Following Korobov, we define, for each $a \geq 1$, the linear space

$$
E^{a}\left(U^{2}\right)=\left\{f \in L^{2}\left(U^{2}\right):\left(f, e_{m, n}\right)=\mathscr{O}\left((\bar{m} \cdot \bar{n})^{-a}\right)(m, n \rightarrow \infty)\right\},
$$

where $\bar{m}=\max \{1,|m|\} \quad(m \in \mathbb{Z})$. It is easily seen that

$$
\begin{equation*}
E^{a}\left(U^{2}\right) \subseteq A\left(U^{2}\right) \quad(a>1) \tag{1.7}
\end{equation*}
$$

We denote by $\mathscr{C}^{p, p}\left(U^{2}\right)$ the linear subspace of $\mathscr{C}\left(U^{2}\right)$ of those functions f whose partial derivatives satisfy

$$
D^{k, l} f \in \mathscr{C}\left(U^{2}\right) \quad(0 \leq k, l \leq p)
$$

Similarly, $\mathscr{C}_{0}^{p, p}\left(U^{2}\right)$ is the linear subspace of $\mathscr{C}_{0}\left(U^{2}\right)$ of functions f with

$$
D^{k, l} f \in \mathscr{C}_{0}\left(U^{2}\right) \quad(0 \leq k, l \leq p)
$$

It was shown in Baszenski and Delvos [1] that

$$
\begin{equation*}
\mathscr{C}_{0}^{q-1, q-1}\left(U^{2}\right) \cap \mathscr{C}^{q+1, q+1}\left(U^{2}\right) \subseteq E^{q+1}\left(U^{2}\right) \quad(q \in \mathbb{N}) \tag{1.8}
\end{equation*}
$$

Proposition 3. If $f \in E^{a}\left(U^{2}\right)$ with $a>1$, then the error in the bivariate rectangle rule satisfies

$$
\begin{equation*}
\mathfrak{I}_{m, n}(f)-\mathfrak{I}(f)=\mathscr{O}\left(m^{-a}+n^{-a}\right) \quad(m, n \rightarrow \infty) \tag{1.9}
\end{equation*}
$$

Proof. Since $f \in E^{a}\left(U^{2}\right)$, we have

$$
\begin{gather*}
R_{m, \infty}(f)=\mathscr{O}\left(m^{-a}\right), \quad R_{\infty, n}(f)=\mathscr{O}\left(n^{-a}\right) \tag{1.10}\\
R_{m, n}(f)=\mathscr{O}\left(m^{-a} \cdot n^{-a}\right) \quad(m, n \rightarrow \infty)
\end{gather*}
$$

from which (1.9) follows by virtue of Proposition 2.
Proposition 4. If $f \in \mathscr{C}_{0}^{q-1, q-1}\left(U^{2}\right) \cap \mathscr{C}^{q+1, q+1}\left(U^{2}\right)$ with $q \in \mathbb{N}$, then the error in the bivariate rectangle rule satisfies

$$
\begin{equation*}
\mathfrak{I}_{m, n}(f)-\mathfrak{I}(f)=\mathscr{O}\left(m^{-q-1}+n^{-q-1}\right) \quad(m, n \rightarrow \infty) \tag{1.11}
\end{equation*}
$$

Proof. Using (1.8), an application of Proposition 3 yields (1.11)

2. r TH-ORDER BLENDING RECTANGLE RULES

We introduce the r th-order sum of bivariate rectangle rules

$$
\begin{equation*}
\mathbf{S}_{r}^{2}(f)=\sum_{m=1}^{r} \mathfrak{I}_{2^{m}, 2^{r+1-m}}(f) \quad\left(r \in \mathbb{Z}_{+}\right) \tag{2.1}
\end{equation*}
$$

Then the rth-order blending rectangle rule $\mathfrak{I}_{r}^{2}(f)$ is

$$
\begin{equation*}
\mathfrak{I}_{r}^{2}(f)=\mathbf{S}_{r}^{2}(f)-\mathbf{S}_{r-1}^{2}(f) \tag{2.2}
\end{equation*}
$$

where $r \in \mathbb{N}$ and $r>1$. The construction of the r th-order blending rectangle rule resembles the explicit formula of the interpolation projector of r th-order blending (Delvos and Posdorf [3] and Delvos [2]). The cubature points of $\mathfrak{I}_{r}^{2}(f)$ are mainly determined by the points occurring in $\mathbf{S}_{r}^{2}(f)$:

$$
\begin{equation*}
\bigcup_{m=1}^{r}\left\{\left(j \cdot 2^{-m}, k \cdot 2^{-r-1+m}\right): 0 \leq j<2^{m}, 0 \leq k<2^{r+1-m}\right\} \tag{2.3}
\end{equation*}
$$

Their number is given by

$$
\begin{equation*}
n_{r}=(r+1) \cdot 2^{r} \tag{2.4}
\end{equation*}
$$

Next we will determine a remainder formula for the r th-order blending rectangle rule.
Proposition 5. If $f \in A\left(U^{2}\right)$, then the error in the rth-order blending rectangle rule is

$$
\begin{align*}
\mathfrak{I}_{r}^{2}(f)-\mathfrak{I}(f)= & R_{2^{r}, \infty}(f)+R_{\infty, 2^{r}}(f) \\
& +\sum_{m=1}^{r} R_{2^{m}, 2^{r+1-m}}(f)-\sum_{m=1}^{r-1} R_{2^{m}}, 2^{r-m}(f) . \tag{2.5}
\end{align*}
$$

Proof. Using (1.6), we get

$$
\begin{aligned}
\mathfrak{I}_{r}^{2}(f)-\mathfrak{I}(f)= & \sum_{m=1}^{r}\left(\mathfrak{I}_{2^{m}, 2^{r+1-m}}(f)-\mathfrak{I}(f)\right)-\sum_{m=1}^{r-1}\left(\mathfrak{I}_{2^{m}, 2^{r-m}}(f)-\mathfrak{I}(f)\right) \\
= & \sum_{m=1}^{r}\left(R_{2^{m}, 2^{r+1-m}}(f)+R_{2^{m}, \infty}(f)+R_{\infty, 2^{m}}(f)\right) \\
& -\sum_{m=1}^{r-1}\left(R_{2^{m}, 2^{r-m}}(f)+R_{2^{m}, \infty}(f)+R_{\infty, 2^{m}}(f)\right) \\
= & R_{2^{r}, \infty}(f)+R_{\infty, 2^{r}}(f) \\
& +\sum_{m=1}^{r} R_{2^{m}, 2^{r+1-m}}(f)-\sum_{m=1}^{r-1} R_{2^{m}, 2^{r-m}}(f) .
\end{aligned}
$$

Proposition 6. If $f \in E^{a}\left(U^{2}\right)$ with $a>1$, then the error in the rth-order blending rectangle rule is

$$
\begin{equation*}
\mathfrak{I}_{r}^{2}(f)-\mathfrak{I}(f)=\mathscr{O}\left((r+1) \cdot\left(2^{r}\right)^{-a}\right) \quad(r \rightarrow \infty) \tag{2.6}
\end{equation*}
$$

Proof. From (1.10) we have

$$
\begin{gathered}
R_{2^{r}, \infty}(f)=\mathscr{O}\left(\left(2^{r}\right)^{-a}\right), \quad R_{\infty, 2^{r}}(f)=\mathscr{O}\left(\left(2^{r}\right)^{-a}\right) \quad(r \rightarrow \infty), \\
R_{2^{m}, 2^{r+1-m}}(f)=\mathscr{O}\left(\left(2^{r+1}\right)^{-a}\right) \quad(1 \leq m \leq r, r \rightarrow \infty), \\
R_{2^{m}, 2^{r-m}}(f)=\mathscr{O}\left(\left(2^{r}\right)^{-a}\right) \quad(1 \leq m<r, r \rightarrow \infty) .
\end{gathered}
$$

Now (2.6) follows from the remainder formula (2.5).

Remark 1. Recall that the number of cubature points of the r th-order blending rectangle rule $\mathfrak{I}_{r}^{2}(f)$ is bounded by

$$
n_{r}=(r+1) 2^{r} .
$$

It is easily seen that the error relation (2.6) of the r th-order blending rectangle rule obtains the form

$$
\mathfrak{I}_{r}^{2}(f)-\mathfrak{I}(f)=\mathscr{O}\left(\log \left(n_{r}\right)^{a+1} \cdot\left(n_{r}\right)^{-a}\right) \quad(r \rightarrow \infty)
$$

where $f \in E^{a}\left(U^{2}\right)$ with $a>1$. Thus, the r th-order blending rectangle rule is comparable with the bivariate number-theoretic "good-lattice" rules (see Sloan [5]). The attractive feature of the r th-order blending rectangle rule is its easy computation based on relations (2.1) and (2.2).
Proposition 7. If $f \in \mathscr{C}_{0}^{q-1, q-1}\left(U^{2}\right) \cap \mathscr{C}^{q+1, q+1}\left(U^{2}\right)$ with $q \in \mathbb{N}$, then the error in the rth-order blending rectangle rule satisfies

$$
\begin{equation*}
\mathfrak{I}_{r}^{2}(f)-\mathfrak{I}(f)=\mathscr{O}\left((r+1) \cdot\left(2^{r}\right)^{-q-1}\right) \quad(r \rightarrow \infty) \tag{2.7}
\end{equation*}
$$

Proof. Use of (1.8) and an application of Proposition 6 yields (2.7).

3. Bivariate midpoint rules

Let m and n be positive integers. A simple cubature formula closely related to the bivariate rectangle rule is the bivariate midpoint rule:

$$
\mathfrak{M}_{m, n}(f)=\frac{1}{m \cdot n} \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} f\left(\frac{2 j+1}{2 m}, \frac{2 k+1}{2 n}\right)
$$

Again, the bivariate midpoint rule is not an efficient cubature formula in view of the large number of function evaluations. However, $\mathfrak{M}_{m, n}(f)$ is a basic tool in constructing the more sophisticated cubature formula of the r th-order blending midpoint rule. For this reason we will briefly derive a convenient remainder formula for $\mathfrak{M}_{m, n}(f)$.
Proposition 8. If $f \in A\left(U^{2}\right)$, then

$$
\begin{equation*}
\mathfrak{M}_{m, n}(f)=\sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty}\left(f, e_{u m, v n}\right) \cdot(-1)^{u+v} \tag{3.1}
\end{equation*}
$$

Proof. By (1.4), we have

$$
\begin{aligned}
\mathfrak{M}_{m, n}(f) & =\frac{1}{m \cdot n} \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} f\left(\frac{2 j+1}{2 m}, \frac{2 k+1}{2 n}\right) \\
& =\sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty}\left(f, e_{r, s}\right) \frac{1}{m \cdot n} \sum_{j=0}^{m-1} e_{r}\left(\frac{2 j+1}{2 m}\right) \sum_{k=0}^{n-1} e_{s}\left(\frac{2 k+1}{2 n}\right) \\
& =\sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty}\left(f, e_{u m, v n}\right) \cdot(-1)^{u+v} .
\end{aligned}
$$

We define the series

$$
\begin{aligned}
Q_{m, \infty}(f) & =\sum_{u \neq 0}\left(f, e_{u m, 0}\right) \cdot(-1)^{u} \\
Q_{\infty, n}(f) & =\sum_{v \neq 0}\left(f, e_{0, v n}\right) \cdot(-1)^{v} \\
Q_{m, n}(f) & =\sum_{u \neq 0} \sum_{v \neq 0}\left(f, e_{u m, v n}\right) \cdot(-1)^{u+v}
\end{aligned}
$$

Proposition 9. If $f \in A\left(U^{2}\right)$, then the error in the bivariate midpoint rule is

$$
\begin{equation*}
\mathfrak{M}_{m, n}(f)-\mathfrak{I}(f)=Q_{m, \infty}(f)+Q_{\infty, n}(f)+Q_{m, n}(f) \tag{3.2}
\end{equation*}
$$

Proof. From (3.1) we get

$$
\mathfrak{M}_{m, n}(f)=\left(f, e_{0,0}\right)+Q_{m, \infty}(f)+Q_{\infty, n}(f)+Q_{m, n}(f)
$$

Since $\mathfrak{I}(f)=\left(f, e_{0,0}\right)$, Proposition 9 follows.
Proposition 10. If $f \in E^{a}\left(U^{2}\right)$ with $a>1$, then the error in the bivariate midpoint rule satisfies

$$
\begin{equation*}
\mathfrak{M}_{m, n}(f)-\mathfrak{I}(f)=\mathscr{O}\left(m^{-a}+n^{-a}\right) \quad(m, n \rightarrow \infty) \tag{3.3}
\end{equation*}
$$

Proof. Since $f \in E^{a}\left(U^{2}\right)$, we have

$$
\begin{gather*}
Q_{m, \infty}(f)=\mathscr{O}\left(m^{-a}\right), \quad Q_{\infty, n}(f)=\mathscr{O}\left(n^{-a}\right) \tag{3.4}\\
Q_{m, n}(f)=\mathscr{O}\left(m^{-a} \cdot n^{-a}\right) \quad(m, n \rightarrow \infty)
\end{gather*}
$$

and (3.3) follows from Proposition 9.
Proposition 11. If $f \in \mathscr{C}_{0}^{q-1, q-1}\left(U^{2}\right) \cap \mathscr{C}^{q+1, q+1}\left(U^{2}\right)$ with $q \in \mathbb{N}$, then the error in the bivariate midpoint rule satisfies

$$
\begin{equation*}
\mathfrak{M}_{m, n}(f)-\mathfrak{I}(f)=\mathscr{O}\left(m^{-q-1}+n^{-q-1}\right) \quad(m, n \rightarrow \infty) \tag{3.5}
\end{equation*}
$$

Proof. The proof of Proposition 11 is similar to that of Proposition 4.

4. r TH-ORDER BLENDING MIDPOINT RULES

We introduce the r th-order sum of bivariate midpoint rules

$$
\begin{equation*}
\mathbf{T}_{r}^{2}(f)=\sum_{m=0}^{r-1} \mathfrak{M}_{2^{m}, 2^{r-1-m}}(f) \quad(r \in \mathbb{N}) \tag{4.1}
\end{equation*}
$$

Then the rth-order blending midpoint rule $\mathfrak{M}_{r}^{2}(f)$ is

$$
\begin{equation*}
\mathfrak{M}_{r}^{2}(f)=\mathbf{T}_{r}^{2}(f)-\mathbf{T}_{r-1}^{2}(f) \tag{4.2}
\end{equation*}
$$

where $r \in \mathbb{N}$ and $r>1$. The construction of the r th-order blending midpoint rule is analogous to the construction of the r th-order blending rectangular rule. While the latter may be interpreted as an interpolatory cubature formula based
on Boolean periodic spline interpolation, no such interpolatory characterization holds for the r th-order blending midpoint rule.

The cubature points of $\mathfrak{M}_{r}^{2}(f)$ are mainly determined by the points occurring in $\mathbf{T}_{r}^{2}(f)$:

$$
\begin{equation*}
\bigcup_{m=0}^{r-1}\left\{\left((2 j+1) \cdot 2^{-m-1},(2 k+1) \cdot 2^{-r+m}\right): 0 \leq j<2^{m}, 0 \leq k<2^{r-1-m}\right\} \tag{4.3}
\end{equation*}
$$

Their number is given by

$$
\begin{equation*}
m_{r}=r \cdot 2^{r-1} \tag{4.4}
\end{equation*}
$$

Next we will determine a remainder formula for the r th-order blending midpoint rule.

Proposition 12. If $f \in A\left(U^{2}\right)$, then the error in the rth-order blending midpoint rule is

$$
\begin{align*}
\mathfrak{M}_{r}^{2}(f)-\mathfrak{I}(f)= & Q_{2^{r-1}, \infty}(f)+Q_{\infty, 2^{r-1}}(f) \\
& +\sum_{m=0}^{r-1} Q_{2^{m}, 2^{r-1-m}}(f)-\sum_{m=0}^{r-2} Q_{2^{m}, 2^{r-2-m}}(f) \tag{4.5}
\end{align*}
$$

Proof. In view of relations (3.2), (3.4), (4.1), and (4.3), the proof of (4.5) is similar to that of (2.5).

Proposition 13. If $f \in E^{a}\left(U^{2}\right)$ with $a>1$, then the error in the rth-order blending midpoint rule is

$$
\begin{equation*}
\mathfrak{M}_{r}^{2}(f)-\mathfrak{I}(f)=\mathscr{O}\left(r \cdot\left(2^{r-1}\right)^{-a}\right) \quad(r \rightarrow \infty) \tag{4.6}
\end{equation*}
$$

Proof. In view of relations (3.4) and (4.5), the proof of (4.6) is similar to that of (2.6).

Remark 2. Recall that the number of cubature points of the r th-order blending midpoint rule $\mathfrak{M}_{r}^{2}(f)$ is mainly determined by $m_{r}=r \cdot 2^{r-1}$. It is easily seen that the error relation (4.6) of the r th-order blending midpoint rule obtains the form

$$
\mathfrak{M}_{r}^{2}(f)-\mathfrak{I}(f)=\mathscr{O}\left(\log \left(m_{r}\right)^{a+1} \cdot\left(m_{r}\right)^{-a}\right) \quad(r \rightarrow \infty)
$$

where $f \in E^{a}\left(U^{2}\right)$ with $a>1$. Thus, the r th-order blending midpoint rule is comparable with the bivariate number-theoretic "good lattice" rules (see Sloan [5]). Again, the attractive feature of the r th-order blending midpoint rule is its easy computation based on relations (4.1) and (4.2).
Proposition 14. If $f \in \mathscr{C}_{0}^{q-1, q-1}\left(U^{2}\right) \cap \mathscr{C}^{q+1, q+1}\left(U^{2}\right)$ with $q \in \mathbb{N}$, then the error in the rth-order blending midpoint rule satisfies

$$
\begin{equation*}
\mathfrak{M}_{r}^{2}(f)-\mathfrak{I}(f)=\mathscr{O}\left(r \cdot\left(2^{r-1}\right)^{-q-1}\right) \quad(r \rightarrow \infty) \tag{4.7}
\end{equation*}
$$

Proof. The proof of Proposition 14 is similar to that of Proposition 7.

5. A numerical example

We consider the double integral

$$
\mathfrak{I}(f)=\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y
$$

with the function

$$
f(x, y)=\frac{x+y}{1+x \cdot y} \quad(x, y \in U)
$$

The function f is an element of the Korobov space $E^{1}\left(U^{2}\right)$. Following Hua and Wang [4, p. 122] we introduce the function

$$
g(x, y)=\frac{1}{4}(f(x, y)+f(x, 1-y)+f(1-x, y)+f(1-x, 1-y)) .
$$

It is easily seen that

$$
\mathfrak{I}(g)=\mathfrak{I}(f)=2 \cdot(\log (4)-1)
$$

and

$$
g \in \mathscr{C}_{0}^{0,0}\left(U^{2}\right) \cap \mathscr{C}^{2,2}\left(U^{2}\right)
$$

It follows from relation (1.8) that Propositions 4 and 7 are applicable to g with $q=1$. The errors and the number of cubature points for the blending rectangle rule and the ordinary rectangle rule are shown in Table 1.

Table 1
Errors in blending and ordinary rectangle rules

r	$(r+1) \cdot 2^{r}$	$\mathfrak{I}_{r}^{2}(g)-\mathfrak{I}(g)$	$2^{2 r}$	$\mathfrak{I}_{2^{r}, 2^{r}}(g)-\mathfrak{I}(g)$
1	4	0.01009	4	0.01009
2	12	0.00365	16	0.00282
3	32	0.00120	64	0.00072
4	80	0.00037	256	0.00018
5	192	0.00011	1024	0.00005
6	448	0.00003	4096	0.00001

Similarly, it follows from relation (1.8) that Propositions 11 and 14 are applicable to g with $q=1$. Table 2 shows the errors and the number of cubature points for the blending midpoint rule and the ordinary midpoint rule. In Figure 1 we exhibit the distribution of cubature points in r th-order sum of midpoint rules.
Remark 3. It follows from (2.3) and (4.3) that the cubature points of $\mathbf{T}_{r}^{2}(f)$ form a subset of the cubature points of $\mathbf{S}_{r}^{2}(f)$ which are not contained in the set of cubature points of $\mathbf{S}_{r-1}^{2}(f)$.
Remark 4. The Boolean methods for double integration can be extended to arbitrary dimensions by using the method of d-variate Boolean interpolation developed in [2]. This is the topic of a forthcoming paper.

Table 2
Errors in blending and ordinary midpoint rules

r	$r \cdot 2^{r-1}$	$\mathfrak{M}_{r}^{2}(g)-\mathfrak{I}(g)$	$2^{2 r-2}$	$\mathfrak{M}_{2^{r-1}, 2^{r-1}}(g)-\mathfrak{I}(g)$
1	1	-0.02741	1	-0.02741
2	4	-0.00317	4	-0.00611
3	12	0.00028	16	-0.00148
4	32	0.00035	64	-0.00037
5	80	0.00016	256	-0.00009
6	192	0.00006	1024	-0.00002

Figure 1
Points of rth-order sum of midpoint rules

Bibliography

1. G. Baszenski and F.-J. Delvos, Boolean methods in Fourier approximation, Topics in Multivariate Approximation (C. K. Chui, L. L. Schumaker, and F. Utreras, eds.), Academic Press, 1987, pp. 1-11.
2. F.-J. Delvos, d-variate Boolean interpolation, J. Approx. Theory 34 (1982), 99-114.
3. F.-J. Delvos and H. Posdorf, N-th order blending, Constructive Theory of Functions of Several Variables (W. Schempp and K. Zeller, eds.), Lecture Notes in Math., vol. 571, Springer-Verlag, 1977, pp. 53-64.
4. Hua Loo Keng and Wang Yuan, Applications of number theory to numerical analysis, Springer-Verlag, 1981.
5. I. H. Sloan, Lattice methods for multiple integration, J. Comput. Appl. Math. 12-13 (1985), 131-143.

Lehrstuhl für Mathematik I, Universität GH Siegen, Hölderlinstrasse 3, D-5900 Siegen, West Germany

